ENGINEERING DATA

PH 7.15 HRV model

Heat Recovery Ventilator 30 CFM (14 L/s) to 160 CFM (76 L/s)

Item No. 100076 (PH 7.15 Greentek) Item No. 100835 (PH 7.15 Imperial)

FEATURES

- 4 operating modes (Econo*, Intermittent, Continuous & High)
- 100% variable speed
- Integrated door pressure balancing taps
- ISF[™] 6" (152.5 mm) dia. collar system
- · Proportional defrost sequence
- SPM[™] Single Person Mounting system
- Permanent lubrification PSC motors

*Econo ventilation mode offered when Vectra Series wall controls model EHC1.0TC or EHC1.5DC are connected to system.

APPLICABLE REQUIREMENTS

- · HVI Certified
- CSA C439 Standard Packaged Heat/Energy Recovery Ventilators (HRV/ERV)
- CSA Standard CSA 22.2 Nº.113 Fans and ventilators
- UL Standard 1812. Ducted Heat/Energy Recovery Ventilators (HRV/ERV)

OPTIONAL ACCESSORIES

- MERV 8 Inline 6" (152.5 mm) filter box
- R-2 Style high performance supply & exhaust ventilation hoods

CABINET

- 20 gauge galvanized pre-painted steel corrosion resistant
- Cabinet liner: Molded Expanded Polystyrene (EPS) Rated UL94 HF-1

ELECTRONIC COMPONENTS

- Electrical Input Voltage: 120 VAC/60Hz / 1-Phase.
- Electrical Input Current: 1.5 Amps Max
- · Circuit output voltage: 5VDC nominal
- Integrated auxiliary furnace interlock relay
- RoHs compliant

MOTORS

- Two permanent sealed, lubricated variable speed PSC Motors. (Maintenance free)
- Maximum RPM 2695 / Horsepower; 3/32 HP. Class F, thermally protected
- CSA 22.2 #113-10, clause 8.3.5
- Backup protection totally enclosed motor

POLYPROPYLENE HRV CORE

- Dimensions 12"x 12"x 10" depth (304.8 mm x 304.8 mm x 254 mm)
- Corrugated cross-flow polypropylene layers, rated UL94 HB & HF-1
- . Cross-flow that transfers sensible heat
- Endure harsh temperatures; effective in cold climates
- Water washable

DUOTROL™ BALANCING SYSTEM

- The system is balanced by adjusting each motor independently
- · No balancing dampers required
- Connection terminals for optional wall controls
- · Quiet and energy efficient

DEFROST

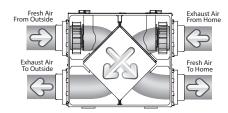
- Advanced Proportional supply fan shut down defrost sequence
- Defrost type: Evacuation Activated automatically at -5°C (23°F)

DUCT CONNECTIONS

- Insert Slide & Fix (ISF™), removable collars system
- Four (4) 6" (152.5 mm) dia. round double collar.

MOUNTING

· Adjustable mounting strap system


FILTERS

- Two (2) Fiberbond washable 1111/16"x 93/4"x 5/6" (297 mm x 248 mm x 15.9 mm)
- UL Class 2

WARRANTY

- 10 year limited warranty on motors
- 5 year limited warranty on parts
- Lifetime limited warranty on Heat Recovery Core

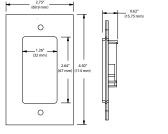
AIRFLOW

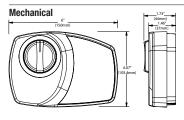
Imperial Air Technologies 480 Ferdinand Blvd., Dieppe, NB Canada E1A 6V9

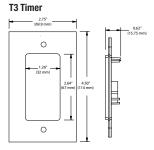
Toll free: 1 888 724-5211 Fax: 1 (506) 388-4633

Visit us at: www.greentek.ca / www.imperialgroup.ca

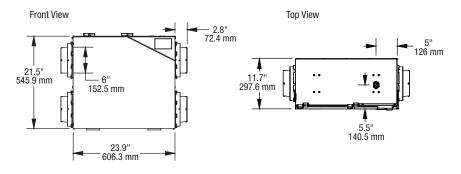
ENGINEERING DATA PH 7.15 HRV

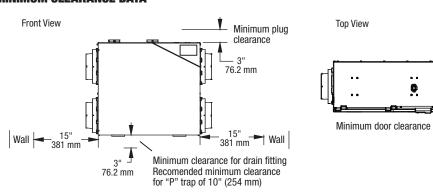

SPECIFICATIONS	PH 7.15 HRV
Dimensions	29½" x 22½" x 11%" (749.3 mm x 571.5 mm x 289 mm)
Duct Connections	Four (4) 6" (152.5 mm) dia. ISF double collar system
Airflow Rates	30 CFM (14 L/s) to 160 CFM (76 L/s)
Motor	Two (2) PSC variable speed backward curved
Voltage	120 VAC @ 60 Hz / 1 Phase
Amperage	1.5 A / 142 watts
Type of heat exchanger	Cross-flow polypropylene
Exchange surface	85 ft ² (7.9 m ²)
Defrost type	Evacuation
Filters	Two (2) Fiberbond washable
Drain Connection	½" (12.7 mm)
DuoTrol	Integrated Balancing System
Actual Weight	43 lbs (19.5 Kg)
Shipping Weight	48.5 lbs (22 Kg)
Certification	HVI, CCSA _{US} , CSA 22.2 Nº.113 Complies with UL 1812


OPTIONAL WALL CONTROLS


Digital	EHC1.0TC and EHC1.5DC RD-1, RD-2, RD-3P and RD-4P		
Mechanical			
Timers	T3 (20, 40, 60 minutes)		

WALL CONTROL DIMENSIONS


EHC1.0 & EHC1.5



DIMENSIONS DATA

MINIMUM CLEARANCE DATA

12"

Extern	al Static	Net	Supply	Gross	Air Flow	Gross	Air Flow	- ■ -Supply -□-Exhaust
Pre	ssure	Air	Flow	Su	pply	Ext	naust	250
Pa	in. wg	L/s	CFM	L/s	CFM	L/s	CFM	(6) 200 × 150
25	0.1	91	193	91	194	103	217	6
50	0.2	84	178	85	179	95	201	
75	0.3	77	163	77	163	86	183	JI 100
100	0.4	71	150	71	151	80	169	\$\\ \(\) \(
125	0.5	63	133	63	134	71	152	₹ 50
150	0.6	57	120	57	121	66	138	
175	0.7	51	109	51	109	57	121	0.1 0.2 0.3 0.4 0.5
CERTIFIED								External Static Pressu in wg ($Pa = n \times 248.3$

ENE	ENERGY PERFORMANCE								
	Supply Temperature		Net Ai	r Flow	Power Consumed	Sensible Recovery Efficiency	Adjusted Sensible Recovery Efficiency		
	°C	°F	L/s	CFM	Watts	SRE %	ASRE %		
5	0	32	31	65	72	66	73		
	0	32	39	83	80	63	69		
Ä	0	32	50	107	94	60	66		
- 1	-25	-13	35	74	72	56	59		

Quoted by:	Date:
Project:	Remarks:
Quantity:	
Model:	
Site:	
Architect:	
Engineer:	
Contractor:	